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Abstract: The correlation coefficient is calculated for amplitude and phase

fluctuations at the receiver. It is shown that in the case of rough-scale inhomog-

eneities, the autocorrelation between the amplitude (or phase) fluctuations at
various receiver points extends over a distance of the same order as the correla-
tion between the fluctuations of the index of refraction in the medium.

Apparently, non-regular time-and-space variations of the properties of the
medium are observed, regularly, in all real media. Random inhomogeneities scatter
waves as they are propagated. The scattered waves, superimposed on the primary
wave, cause fluctuations in the amplitude and phase of the resultant field.

For example, such phenomena as fluctuation in loudness in acoustics, the
twinkling of stars in optics, occasional fading in radio engineering depend on
the influence of the random inhomogeneities of the medium. From this brief list
of phenomena, referring to various branches of physics, there follows that the
question of the fluctuations of the basic characteristics of wave fields is one
of the general questions of wave prépagation theory.

A dependence must exist between the fluctuations of the index of refraction
of the medium and the fluctuations of the characteristics of the wave field. The
problem is to establish this dependence. Using this dependence, conclusions can
be made on the statistical properties 6f the wave field; to know the statistical
properties of the medium and conversely. Therefore, the study of fluctuations
in waves, interesting in itself as it is, opens new possibilities of studying
the properties of the medium through which the wave passes,

Works by a number of Soviet [;,2] and foreign [ﬁ,S] authors are devoted to

the computation of the amplitude and phase fluctuation. However, the theoretical
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and practical question of interest on the correlation of amplitude and phase
fluctuations has been studied but slightly. Here, two queétions naturally arise:

1. Does a correlation exist between the amplitude and phase fluctuations
at the receiver?

2. Does an auto-correlation exist between the amplitude (or phase) fluctu-
ations at various receiver points and what is the extent of this auto-correlation?

Insofar as we know, the first question has not yet been answered. The second
question was considered by certain authors [1 ,h] only in the ray approximation
(geometric optics). Here, however,Ast:.Lll not aspparent is the simple rule that the
auto-correlation between the amplitude (or phase) fluctuations extends approxim-
ately the same distance as the correlation between the random inhomogeneities of
the medium itself, if the scale of the latter is large compared with the wave
length;

Both questions are analyzed below under the assumptions that the medium is
isotropic, that there are no regular variations of homogeneity, that the random
deviations of the index of refraction of the medium from the average value are
small and that their scale is large compared with the wave length.

Let us derive the initial formulas for the subsequent investigation by re-
producing (with slight variations) the corresponding part of the work of A, M.
Obukhov [2];

Let the index of refraction oscillgte around the average value equal to
unitys:

(1) n=14+p3 lu|<< 1

Here p depends on the coordinates. We will not take the time-dependence
of pu explicitly into account, but consider that the characteristics of the
medium vary very slowly with time (the frequency of the variation is small in

comparison to the wave frequency). Then the wave function V¥ , characterizing
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the wave field, will satisfy the equation:

2

(2) vzwu(l_%-“-)—v.o
C
(o]

where % is the average value of the speed of sound in the medium.

Furthermore, for the sake of definiteness, we will consider that the random
inhomogeneities are only in the right half-space (x > 0). The left half-space
(x £ 0) contains no random inhomogeneities. The equation of the incldent plane
wave in the left half-space can be glven as

v o oilet-ix)
(o] o]

The wave equation in the right half-space will be

If the usual method of small perturbations be used in looking for ¥ , which
is often applied in scatter theory taking the zero approximation ‘4’0 into account,
then the expressions obtained for the amplitude and phase fluctuations will be
limited by the smallness requirements and, therefore, by small distances, since
the fluctuations increase with distance. Consequently, it is expedient to use
the small perturbations method in the form given by S. M. Rytov [3].

As we will see below, the small perturbations method in this form is not
limited by such rigid requirements as is essential for the comparison of theory
and experiment since large amplitude and phase fluctuations are often observed
in experiment. The substance of the method is the replacement of the wave

function ¥ by another function ¢ which is related to the first through:

) Vo Aoeifwt - o(F))

From a comparison of (L)) and (3) there follows that ®(T) is determined

by the following relation:

(5) @) = S(T) +1i1ln %—
0
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As is seen, the real and imaginarv parts of the function ‘P(?) introduced
determine the phase and the logarith?q.f,\t?':tio of the amplitudes.(level of sound
intensity), respectively. We are directly concerned with the fluctuations of
these quantities.

Replacing, on the basis of (L), V¥ through % in (2), we obtain an equa-

tion in @ :

-s

(/]
(6) ()2 + iV%® = k°n° k =2
9]

The zero approximation ‘Po satisfies the equation for the homogeneous medium:
2 2
(7) (7 )¢ + 4 v2<i>° =k
Subtracting (7) from (6), we obtain an equation for @' =9 -9
2(ve V) + 17991 = 2uk° + 642k2 - (V“")z]

Using the small perturbations method and assuming that W' (more accurately,
the nondimensional quantity %W" ) has order u , we discard the terms enclosed
in the square brackets as second order quantities in p . Then we obtain a linear

equation in @' :
(8) 2(Ve_W1) 4 1701 = 2p,k2

This equation was obtained under the assumption that
1 1 - .l 1
(9) Tl or F[Wre1
This last condition means that the phase variation and the relative amplitude
variation within a wave length must be small. Relation (9) imposes no limitations

on the total variation of these quantities. Assuming ¢ =kx in (8), we obtain:

!
(10) 2k %;— #1701 = 2ux?

The exact solution of this equation is:
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r

u(,m,%) d¥ dn d¥

2
(ll) (P'(x,y’z) = lké‘i f.é/‘

where V dis the region occupied by the random inhomogeneities.
Separating into real and imag jnary parts, we obtain the follawing formulas

for the phase and amplitude fluctuations:

2
(12) S' = 5= /// % sin k[r-(x-D)] w1, ¥) d§ dq &
v
( A k2 1 .
13) in I = /4/; cos k[r-(x-E)] w(g,m,%) d& dy &

In the rough-scale inhomogeneity case when ka >>' 1 (where a 1is the scale
of the inhomogeneity), the scattering angles are small and do not exceed %—5
in order of magnitude. For this reason, a substantial effect will be given by
those inhomogeneities concentrated within the cone with vertex at the receiver

and vertex angle of order L Within this cone, the formula r = -V (x—E)2 + p2

ka
where 92 = (y - 7)2 + (z - t_’,)z , can be replaced by the approximation
1_p?
(1) rz(x-§)+§x_£

Replacing [r-(x-f.)] in (12) and (13) by the approximation (14) and the

quantity 1 by L , we obtain:
r x -3 D
2 sin =
(15) S = -2?_‘/].. X - g 98 dv
2
k
2 cos —-(—9-7
(16) lnA—ul{—f 28X u dv
A b x-Z
o] ')
Let us introduce the new notation, assuming:
| 2
- & )_ k k
ii(k P Ttk = E) SR BT

2
x-5 \_ k k
2 k ’P)s 2n(x -é,‘_f cos 21x—€§
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Then (15) and (16) are rewritten thus:

(17) Sgsn) =k [ [ 2 (55Ep) uEm0) @8 @
In g S o - —T: ML

) X

(18) 1n A883) Ly /7 e, (EE0) w0 ap ana
o (o] (e o]

Therefore, having obtained the basic initial formulas, let us turn to the

@
-0 =

statistical consideration of the question. Let us characterize the statistical

properties of the medium by the correlation function R(r) :

R(r) =t i,
where By and ik, are small deviations of the indéex of refraction from the -
average value at two receiver points a distance r apart. The bar.denotes
the statistical average.

Formulas (17) and (18) can be used to explain the question of the correlation
between the amplitude and phase fluctuations at the reception point (L,0,0). To
this end, let us multiply (17) by (18) and let us take the average and we obtain,
after introducing the nondimensional variables &' =k§ ; %' =k»n 3 L' =k

p'=kp ; L'=kLj; r'=k%kr:

L' L!

@
(29) [s' mé—] - %{ ST 315 p) #,(L-Eup) Rxt) X

A (w,0,0)
t gn' grt g&! dnt az!
X5} dp, dx] &) dyp) s
Transforming to relative coordinates 7N ==‘qi - ’flz' ;s &= zl' - Zé and the
coordinates of the center of gravity y = %(’qi +"qé) ; z = %(2;]'_ + Zé), we can

integrate over y and 2z . Then, we obtain:

LL' @
(20) [s' In %] =5/ JT 2, [-@1+8) pIR(rY) amax @by azy
°l(x,0,00 °°°®
1 LL' o
-3 ST I @G {RppRY) anaz by agy
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where p2 = 722 + >;2 . Formula (20) yields the general solution of the formulated
problem, In order to use it, it is necessary to give the correlation function

R(r') . For example, if we assume that it is:

2 a2
(21) R(r') = Roexpg- %}z R, exp{— -?—2}
: a a

where r'2 = 52 +1?2 +>;2 ; {=§:{ -;2' then after integration in (20) we obtain:

2
(22) Is" 1n %;](L 0.0 = -é Roa3k3 ln[l + (-k-fé) }

and for the correlation coefficient Ras , we obtain on the basis of (22),(20)

and (21):

2
1 1n (1 + D°)
(23) R =3

as 02 ~ (arctan D)2

where D = 5‘? . At small distances (D{L1) when geometric optics is suitable,
a

(23) yields:™

R ¥1+/2 wo.6

as

i
5o

At large distances (D 1), (23) becomes:

1nD
as D

i.e., the correlation coefficient decreases with distance, approaching zero.
Therefore, the correlation between the amplitude and phase fluctuations is sub-
stantial at short distances and vanishes at long.

Now, let us analyze the question of the auto-correlation of the amplitude
and phase fluctuations at various reception points.

Let us assume that both receivers lie in the x = L plane separated by a
distance U .

The receiver coordinates are (1,0,0) and (1L,0,1), respectively. The amplitude

# The author erroneously gave half this result in his paper (DAN,98,No.6,1954).
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and phase fluctuations are determined by (17) and (18) both for the first and éec-
ond receivers. The difference is only that pi = 11% + 4.1.2 for the first and that
pg =’1§ + (1 - zz)z
and amplitudes are determined, consequently, by the following:

for the second. The auto-correlation functions for the phases

(2h) ] - 34 + 1)
(28) ~ m% 1n ;3 - X1, - I,)
o) o

where

LL' o
(26) I = _é'(j)'ff % (5)- £3,p) R(r') dnax & d&}

-0

L'L' @

(27) I, = gé‘ {o 3, [2L-&+E3),p] R(r") dy dz d&} d;,?'

P2 "'22 + (g + Z')2 3 1=kl
Formulas (2L) - (27) give the solution of the problem of the amplitude and
phase auto-correlation at various reception points in general form. Assuming that
the correlation function R(xr') is given by (21), and integrating in (26) and

(27) by assuming that kay> 1, L >) a , we obtain:

2 2
(28) L - R ak’L exp{— -ﬁ-é -(-:72 i—jg
(29) I, = §% R KO [Ei(e,) - Bile,))
22 22
where €y = - D—;z—r _’;_Z_i Ei is the exponential integral. In the

particular case, l 0 ; hence there result the mean square amplitude and phase
fluctuation formulas obtained by A. M. Obukhov [2].
(30) s . —32@ R ak’L (1 + 3 arctan D )

2
(31) (111 %—) = —’éj- Roa.kzL 1 - -15 arctan D )
(o]
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From (24),(25), (28), (29), (30) and (31) we find the following expression

for the auto-correlation coefficient:

2 2
i exP{" - % ial} + sip(EL(e)) - Bile))]

32 Ra"s 1 :-lD arctan D
l
Ra,s where the upper sign should be taken in
08 - calculating the phase auto-correlation
b function, Rs , and the lower for the ampl-
’ itude auto-correlation function, Ra . As
04 seen from (32), the auto-correlation func-
02 tion depends only on the three nondimens-
ional parameters: % s, D, ka . For small
0 and average distances (D £ 1) we obtain
-2 an asymptotic value of Ra 3 for large

b

L
Figure 1. 1 - Auto-correlation |°SNOugh 3 » if we use the asymptotic

coefficlent for amplitude fluctuations;
2 - correlation coefficlent for the
index of refraction fluctuatlons;

3 ~ auto-correlation coefficient fo !
MM

(33) R < =l (121

expression for the Ei function [7]:

D
) 2
A D [ D

sin — COS ===
a2l + D 214D (_ 2 3
L2D 12 a2 1 + D
2 2

1+

The auto-correlation coefficient is small in comparison with unity because
of the exponential factor in the numerator. This means that the correlation
between the amplitude and phase fluctuations extends over a distance ! of the

order of the radius of correlation a in the medium.
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For long distances (D>>1), (32) becomes:

(3L) Mkj} [’3' Siléz)l

1 +— arctan D

The dependence of the auto-correlation coefficient on the distance l ve-
tween the receivers is shown graphically (fig. 1) for the case of D = 10,
ka = 102 - :l.Oh . The middle curve is the correlation coefficient for the index
of refraction as given by (21). From the graph, it can be seen that the auto-
, corr-elation between the amplitude and phase fluctuations extends a distance of
the order of the radius of correlation of the inhomogeneities in the medium.

We arrived at the same conclusion when we considered short and average distances.

I wish to express deep grafitude to L. M, Brekhovskikh for valuable suggestions.

Acoustics IMg:z:é::Vute, AN USSR October, 1954
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